Amplicon data를 분석할 때 주로 사용하는 QIIME2의 plugins를 정리하였다.
전체 plugin 목록 (2021.4 기준)
주로 사용하는 plugin과 pipeline, methods, visualizers는 bold로 표시하였다.
- alignment: Plugin for generating and manipulating alignments.
- Methods
- mafft: De novo multiple sequence alignment with MAFFT
- mafft-add: Add sequences to multiple sequence alignment with MAFFT.
- mask: Positional conservation and gap filtering.
- composition: Plugin for compositional data analysis.
- Methods
- add-pseudocount: Add pseudocount to table
- Visualizers
- ancom: Apply ANCOM to identify features that differ in abundance.
- cutadapt: Plugin for removing adapter sequences, primers, and other unwanted sequence from sequence data.
- Methods
- demux-paired: Demultiplex paired-end sequence data with barcodes in-sequence.
- demux-single: Demultiplex single-end sequence data with barcodes in-sequence.
- trim-paired: Find and remove adapters in demultiplexed paired-end sequences.
- trim-single: Find and remove adapters in demultiplexed single-end sequences. 특정 길이 이하의 sequence는 버리고 싶을 때 사용 가능.
- dada2: Plugin for sequence quality control with DADA2.
- Methods
- denoise-paired: Denoise and dereplicate paired-end sequences
- denoise-pyro: Denoise and dereplicate single-end pyrosequences
- denoise-single: Denoise and dereplicate single-end sequences
- deblur: Plugin for sequence quality control with Deblur.
- Methods
- denoise-16S: Deblur sequences using a 16S positive filter. ASV profile을 얻기 위해 사용할 수 있다. 이때 input으로는 QC를 마친 데이터를 넣어주어야 한다.
- denoise-other: Deblur sequences using a user-specified positive filter.
- Visualizers
- visualize-stats: Visualize Deblur stats per sample. Deblur후 남은 reads는 몇 개인지 등의 정보를 알 수 있다. deblur 사용 시 --p-sample-stats 옵션을 넣지 않았다면 표시가 안 된다.
- demux: Plugin for demultiplexing & viewing sequence quality.
- Methods
- emp-paired: Demultiplex paired-end sequence data generated with the EMP protocol.
- emp-single: Demultiplex sequence data generated with the EMP protocol.
- filter-samples: Filter samples out of demultiplexed data.
- subsample-paired: Subsample paired-end sequences without replacement.
- subsample-single: Subsample single-end sequences without replacement.
- Visualizers
- summarize: Summarize counts per sample. Sequence의 read quality와 길이 정보 등을 알 수 있다.
- diversity: Plugin for exploring community diversity.
- Pipelines
- alpha: Alpha diversity
- alpha-phylogenetic: Alpha diversity (phylogenetic)
- beta: Beta diversity
- beta-correlation: Beta diversity correlation
- beta-phylogenetic: Beta diversity (phylogenetic)
- core-metrics: Core diversity metrics (non-phylogenetic)
- core-metrics-phylogenetic: Core diversity metrics (phylogenetic and non-phylogenetic)
- Methods
- filter-distance-matrix: Filter samples from a distance matrix.
- pcoa: Principal Coordinate Analysis
- pcoa-biplot: Principal Coordinate Analysis Biplot
- procrustes-analysis: Procrustes Analysis
- Visualizers
- adonis: adonis PERMANOVA test for beta group significance
- alpha-correlation: Alpha diversity correlation
- alpha-group-significance: Alpha diversity comparisons
- alpha-rarefaction: Alpha rarefaction curves
- beta-group-significance: Beta diversity group significance
- beta-rarefaction: Beta diversity rarefaction
- bioenv: bioenv
- mantel: Apply the Mantel test to two distance matrices
- diversity-lib: Plugin for computing community diversity.
- Methods
- alpha-passthrough: Alpha Passthrough (non-phylogenetic)
- beta-passthrough: Beta Passthrough (non-phylogenetic)
- beta-phylogenetic-meta-passthrough: Beta Phylogenetic Meta Passthrough
- beta-phylogenetic-passthrough: Beta Phylogenetic Passthrough
- bray-curtis: Bray-Curtis Dissimilarity
- faith-pd: Faith’s Phylogenetic Diversity
- jaccard: Jaccard Distance
- observed-features: Observed Features
- pielou-evenness: Pielou’s Evenness
- shannon-entropy: Shannon’s Entropy
- unweighted-unifrac: Unweighted Unifrac
- weighted-unifrac: Weighted Unifrac
- emperor: Plugin for ordination plotting with Emperor.
- Visualizers
- biplot: Visualize and Interact with Principal Coordinates Analysis Biplot
- plot: Visualize and Interact with Principal Coordinates Analysis Plots
- procrustes-plot: Visualize and Interact with a procrustes plot
- feature-classifier: Plugin for taxonomic classification.
- Pipelines
- classify-hybrid-vsearch-sklearn: ALPHA Hybrid classifier: VSEARCH exact match + sklearn classifier
- Methods
- classify-consensus-blast: BLAST+ consensus taxonomy classifier
- classify-consensus-vsearch: VSEARCH-based consensus taxonomy classifier. Global alignment를 바탕으로 taxonomic assignment를 진행할 때 사용 가능.
- classify-sklearn: Pre-fitted sklearn-based taxonomy classifier
- extract-reads: Extract reads from reference sequences.
- fit-classifier-naive-bayes: Train the naive_bayes classifier
- fit-classifier-sklearn: Train an almost arbitrary scikit-learn classifier
- feature-table: Plugin for working with sample by feature tables.
- Methods
- filter-features: Filter features from table
- filter-features-conditionally: Filter features from a table based on abundance and prevalence
- filter-samples: Filter samples from table. Table에서 특정 samples을 제외하고 싶을 때 사용 가능.
- filter-seqs: Filter features from sequences. Table에 존재하는 sequence만 남기고 싶을 때 사용 가능.
- group: Group samples or features by a metadata column
- merge: Combine multiple tables. 여러 개의 table을 합치고 싶을 때 사용 가능.
- merge-seqs: Combine collections of feature sequences. 여러 개의 sequence 파일을 합치고 싶을 때 사용 가능.
- merge-taxa: Combine collections of feature taxonomies
- presence-absence: Convert to presence/absence
- rarefy: Rarefy table
- relative-frequency: Convert to relative frequencies
- rename-ids: Renames sample or feature ids in a table
- subsample: Subsample table
- transpose: Transpose a feature table.
- Visualizers
- core-features: Identify core features in table
- heatmap: Generate a heatmap representation of a feature table
- summarize: Summarize table. FeatureTable[Frequency]를 확인할 때 사용 가능.
- tabulate-seqs: View sequence associated with each feature. FeatureData[Sequence]를 확인할 때 사용 가능.
- fragment-insertion: Plugin for extending phylogenies.
- Methods
- classify-otus-experimental: Experimental: Obtain taxonomic lineages, by finding closest OTU in reference phylogeny.
- filter-features: Filter fragments in tree from table.
- sepp: Insert fragment sequences using SEPP into reference phylogenies.
- gneiss: Plugin for building compositional models.
- Methods
- assign-ids: Assigns ids on internal nodes in the tree, and makes sure that they are consistent with the table columns.
- correlation-clustering: Hierarchical clustering using feature correlation.
- gradient-clustering: Hierarchical clustering using gradient information.
- ilr-hierarchical: Isometric Log-ratio Transform applied to a hierarchical clustering
- ilr-phylogenetic: Isometric Log-ratio Transform applied to a phylogenetic tree
- ilr-phylogenetic-differential: Differentially abundant Phylogenetic Log Ratios.
- ilr-phylogenetic-ordination: Ordination through a phylogenetic Isometric Log Ratio transform.
- Visualizers
- dendrogram-heatmap: Dendrogram heatmap.
- longitudinal: Plugin for paired sample and time series analyses.
- Pipelines
- feature-volatility: Feature volatility analysis
- maturity-index: Microbial maturity index prediction.
- Methods
- first-differences: Compute first differences or difference from baseline between sequential states
- first-distances: Compute first distances or distance from baseline between sequential states
- nmit: Nonparametric microbial interdependence test
- Visualizers
- anova: ANOVA test
- linear-mixed-effects: Linear mixed effects modeling
- pairwise-differences: Paired difference testing and boxplots
- pairwise-distances: Paired pairwise distance testing and boxplots
- plot-feature-volatility: Plot longitudinal feature volatility and importances
- volatility: Generate interactive volatility plot
- metadata: Plugin for working with Metadata.
- Methods
- distance-matrix: Create a distance matrix from a numeric Metadata column
- Visualizers
- tabulate: Interactively explore Metadata in an HTML table. Qaulity control status 파일을 확인할 때 사용 가능.
- phylogeny: Plugin for generating and manipulating phylogenies.
- Pipelines
- align-to-tree-mafft-fasttree: Build a phylogenetic tree using fasttree and mafft alignment
- align-to-tree-mafft-iqtree: Build a phylogenetic tree using iqtree and mafft alignment.
- align-to-tree-mafft-raxml: Build a phylogenetic tree using raxml and mafft alignment.
- Methods
- fasttree: Construct a phylogenetic tree with FastTree.
- filter-table: Remove features from table if they’re not present in tree.
- iqtree: Construct a phylogenetic tree with IQ-TREE.
- iqtree-ultrafast-bootstrap: Construct a phylogenetic tree with IQ-TREE with bootstrap supports.
- midpoint-root: Midpoint root an unrooted phylogenetic tree.
- raxml: Construct a phylogenetic tree with RAxML.
- raxml-rapid-bootstrap: Construct a phylogenetic tree with bootstrap supports using RAxML.
- robinson-foulds: Calculate Robinson-Foulds distance between phylogenetic trees.
- quality-control: Plugin for quality control of feature and sequence data.
- Methods
- bowtie2-build: Build bowtie2 index from reference sequences.
- exclude-seqs: Exclude sequences by alignment
- filter-reads: Filter demultiplexed sequences by alignment to reference database.
- Visualizers
- evaluate-composition: Evaluate expected vs. observed taxonomic composition of samples
- evaluate-seqs: Compare query (observed) vs. reference (expected) sequences.
- evaluate-taxonomy: Evaluate expected vs. observed taxonomic assignments
- quality-filter: Plugin for PHRED-based filtering and trimming.
- Methods
- q-score: Quality filter based on sequence quality scores. Quality control할 때 사용 가능.
- sample-classifier: Plugin for machine learning prediction of sample metadata.
- Pipelines
- classify-samples: Train and test a cross-validated supervised learning classifier.
- classify-samples-from-dist: Run k-nearest-neighbors on a labeled distance matrix.
- heatmap: Generate heatmap of important features.
- metatable: Convert (and merge) positive numeric metadata (in)to feature table.
- regress-samples: Train and test a cross-validated supervised learning regressor.
- Methods
- classify-samples-ncv: Nested cross-validated supervised learning classifier.
- fit-classifier: Fit a supervised learning classifier.
- fit-regressor: Fit a supervised learning regressor.
- predict-classification: Use trained classifier to predict target values for new samples.
- predict-regression: Use trained regressor to predict target values for new samples.
- regress-samples-ncv: Nested cross-validated supervised learning regressor.
- split-table: Split a feature table into training and testing sets.
- Visualizers
- confusion-matrix: Make a confusion matrix from sample classifier predictions.
- scatterplot: Make 2D scatterplot and linear regression of regressor predictions.
- summarize: Summarize parameter and feature extraction information for a trained estimator.
- taxa: Plugin for working with feature taxonomy annotations.
- Methods
- collapse: Collapse features by their taxonomy at the specified level
- filter-seqs: Taxonomy-based feature sequence filter.
- filter-table: Taxonomy-based feature table filter.
- Visualizers
- barplot: Visualize taxonomy with an interactive bar plot. Bar plot으로 relative abundance를 나타내고 싶을 때 사용 가능.
- types: Plugin defining types for microbiome analysis.
- vsearch: Plugin for clustering and dereplicating with vsearch.
- Pipelines
- cluster-features-open-reference: Open-reference clustering of features.
- Methods
- cluster-features-closed-reference: Closed-reference clustering of features.
- cluster-features-de-novo: De novo clustering of features.
- dereplicate-sequences: Dereplicate sequences.
- join-pairs: Join paired-end reads.
- uchime-denovo: De novo chimera filtering with vsearch.
- uchime-ref: Reference-based chimera filtering with vsearch.
- Visualizers
- fastq-stats: Fastq stats with vsearch.
분석 예시
Getting ASV profile (Single-end)
Getting ASV profile (Paired-end)
Taxonomic assignment
Trimming sequences
Feature data filtering
Feature data merging
Data export
QIIME2 artifacts (.qza)를 일반적으로 사용하는 형식 (tsv, fasta 등)으로 바꿔줄 수 있다. 아래 예제 이외에도 다양한 QIIME2 artifacts를 export할 수 있으며, 어떤 artifacts이냐에 따라 export되는 형식이 달라진다.
Calculate alpha diversity metrics
Reference
728x90
반응형
'Bioinformatics > Metagenomics' 카테고리의 다른 글
[MDB] Gene Catalog 및 Genome Catalog를 정리한 Microbiome database (0) | 2021.07.14 |
---|---|
[용어 설명] Microbiome, Microbiota, Metagenome 차이 (0) | 2021.07.01 |
[QIIME2] QIIME과 관련된 Data resources (0) | 2021.03.31 |
[QIIME2] Training feature classifiers with q2-feature-classifier 튜토리얼 (0) | 2021.03.30 |
[QIIME2] Paired-end reads를 Deblur로 분석하는 방법 (using Aritifact API) (0) | 2021.03.09 |